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ABSTRACT

In this paper we construct an example of a word metric on an infi-
nite cyclic subgroup. This example shows that subexponential distortion
does not obstruct non-trivial growth of connected radii. This answers
a question of Gromov [6]. The constructed metric has other pathologi-
cal properies. Specifically, its asymptotic cone depends on the choice of
ultrafilter and scaling sequence.

1. Introduction

All groups under consideration are assumed to be finitely generated. If H is a
group, Iy and dyg denote the word length and the word metric corresponding to
some finite set of generators.

Consider spaces (X, dx) and (Y, dy) such that X C Y. The notion of distortion
describes the difference between intrinsic metric dy and dx|y on Y.

Definition 1: See [6]. Distortion function dist(r) is

sup dy (y1,¥2)/dx (y1,y2)

where dx (y1,y2) < 7.
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We can use this definition for groups. If G is a subgroup of H we consider
X = (H,dy) and Y = (G,dg), where dg and dg are the word metrics of H
and G respectively. Distortion function depends on word metrics chosen. But if
dist;, dists are distortion functions corresponding to different word metrics, then
dist; / diste is bounded for » > 1. In what follows we say that the distortion
function dist is equivalent to f if dist /f and f/ dist are bounded for » > 1.

Any reasonable function is equivalent in this sense to some distortion function
([8], [9]). It is known that if a subgroup of a hyperbolic group has subexponential
distortion, then the distortion function is linear ([5]). For further examples of
distortion see [1], [3], [6], [8], [9]-

Suppose now that Y is k-connected. Fix in Y some point, say e. Consider the
ball B(e, R) in X. Its intersection with Y does not need to be k-connected.

Definition 2 (see [6], §4): Connectedness radius Ri(r) is inf L, L > r being
such that any embedding of a l-sphere, | < k, into B(e,7) NY is contractible in
B(e,L)NY.

Now we want to apply this to the situation of G C H. A group itself is
not k-connected, indeed it is not connected. So we have to take an appropriate
thickening.

Definition 3: A metric space Hj is a thickening of H if H is isometrically
embedded into H; and supd(hy, H) < 00, by € Hy.

Definition 4 (see [6], §3): H is large-scale k-connected, if for any thickening H,
of H there exists a k-connected thickening Hy of Hj.

For £ = 0 as well as for geodesic H and k = 1 this definition becomes simpler,
since in this case H is k-connected if and only if there exists a k-connected
thickening of it. (For k > 1 the last condition is not sufficient.)

Note that any finitely generated group is large-scale 0-connected. The Cayley
graph can be taken as a thickening to see this.

A group is 1-connected if and only if it is finitely presentable ([6], 1.C’).

It is shown in [6], 4.A.1 that if the distortion function grows faster than any
exponent then the growth of O-connectedness radius is non-trivial. It was asked
there (4.A.2) if the converse is true: that is, if at most exponential growth of
distortion implies triviality of O-connected radius.

We construct a counterexample to this. We show that an infinite cyclic sub-
group of some finitely presented group can have at most quadratic distortion and
non-trivial Ro(R). Here non-trivial means that there is no constant C such that
Ry(R) < CR.
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2. Definition of the function [

In this section we construct (a length function of) some metric on R In the
next section (Lemma 2) we check that this function is subadditive, and hence,
in fact, defines a metric on a line. The main property of this metric is that it is
“extremely unmonotone” (see the statement (4) of Lemma 1). This would imply
the non-linearity of Ry. The statement (1) of Lemma 1 ensures that we can use
a theorem of Ol'shanskii [8] and see that this metric is equivalent to some word
metric on an infinite cyclic subgroup of some finitely generated group H. The
same property implies that the distortion of this subgroup is at most exponential
(moreover, it is at most quadratic.) The statement (3) of Lemma 1 allows us to
use another theorem of Ol’shanskii [9] and to choose the group H to be finitely
presented.

Define I: R — Ry as follows. Put AM™ = 10%*1°". On the segment [0,10%]
put I(z) = y/z. For n > 1 on the segment [A("), A(®*+1)] define ! in the following
way. Let

oM = A,
2 = 2n2 Ay

for 1 <7< 2n,
x%Z)H =4ntA™.

(In the following we drop the upper index n.) On [xg, T2n+1] let I be piecewise
linear function with !’ having breaks at each z;, such that

Uzo) = VAM),

for1<i<n

l(xg;) = 2niv AM),
l(:ﬂgiﬁl) = 2’)12 V A(n),
UZany1) = 202V A,

(Note that l(.”l?f_)n_l) = l(.fl?f_)n) = l(032n+1) = \/M)

On the segment [2o,41, A™D] let I(x) be /2.

It remains to define I(z) for © < 0, which we do by letting I(z) = I(—z). See
Figure 1 for the graph of [ on the segment [z, T2, in the case n = 4. The lower
line is the graph of the square root. Note that the scale of the horizontal axis is
much larger than that of the vertical one.
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y=l(x}

yx

Xy X X, X3 Xy Xs X Xy
Figure 1.

3. Properties of [

LEMMA 1: The constructed function | has the following properties.

(1) Uz) = Vil

(2) maxxE[A(n)’A(nﬂ)] l(.’L‘) = l(A(n+1)) and minme[A(n)’A(n+l)] l(.’l?) = l(A(")).
(3) The function [l]|z is computable.

(4) 1(@$™)/1(z5") = n.

Proof: (1) Since on the segment [z3,_1,Z2,+1) the function is constant and on
[Tans1, A®TV] it is equal to /Z, it is clear that I(z) > /T on [xan_1, ATV
Note that I(x) > z/(nVAM™) > /x on [zg,zan-1]. Note that I(z) > /T on
[#1, %3], since [ decreases on this segment and I(x2) = /3. On [2o, ;] we have
l(z) =x/\/xg > V.

(2) Note that [ is non-decreasing on [z, A®+Y)]. Note also that I(z;) > I(xo)
for any 1.

(3) This is clear from the definition of .

(4) Note that I(z{™) = 2n2V/A®™ and I(z{) = 2nV/AM),

LEMMA 2: Function l is subadditive, that is, [{a + b) < l{a) + l(b).

Proof: Since for any x I(x) = [(—z), it suffices to show that for a,b > 0

[11{a + 8) — ()] < U(a).
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In the following we will assume that a,b > 0. Let us prove the inequality by
induction on n, assuming that a + b < A™+1,

Base: n = 0. Note that ||va +b— vb|| < Va.

INDUCTION STEP: Assume that
lli(a+b) = 1(b)|| < Ua)

for a + b < A", Consider function f: [0, A®*1)] — R such that f(zx) = I(z)
for € [A™, A?*V] and such that it is linear on [0, A™)], £(0) = 0, f(A™)) =
VA®). Note that f has no break at i . Let us prove that

I1f(a+0) - fO)Il < f(a).

(1) Let a + b < z9p41. Since f is piecewise linear on [0, T2,41], it suffices to
consider the cases in which at least two of the numbers a, b, a +b are breaks of f’.
As z1,...,%y, form an arithmetic progression, either all three numbers a,b,a+ b
are breaks of f/, or a +b > x9,.

FIrRsT CASE: Suppose that a + b < T2,. Then a =z, d = 2, a + b = Tppmm.
If both k£ and m are even, then f(a +b) = f(a) + f(b). Otherwise, among
k,m,k + m there are two odd numbers. Hence two of f(zk), f(zm), f(zr +m)
are equal to 2n2v/A, and the third one is less than or equal to 2n%v/A. So
f(zk), f(zm), f(Trt+m) are sides of a triangle.

SECOND CASE: Suppose that a + b > x5,. Then
fla+b) =20*VA 2 f(a), f(b).

If either f(a) or f(b) is equal to 2r%V/A, then it is clear that f(a), f(b), f(a + b)
are sides of a triangle. If not, then ¢ = z4,b = z,,, k and m are even. Then
f(z) = 2/(nVA) for = a, for x = b and for = = x3,. So f(a+b) = f(x2,) <
fla) + £(b)-

(2) Now let us prove that

If(a+8) - F(O)I < f(a)

for any positive a and b such that a + b < A™*1). Now we can assume that
a+b> za,41. But then f(a+b) > f(a), f(b) and

fla+b)=vVa+b<vVa+vb< fla)+ f(b).
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Now let us prove the induction step. Note that on [0, A(™)]
f(z) =z/V AN < Vx <l(x).

Now consider a and b such that a + b < A™*D. For a,b < A™ we know the
inequality by the induction hypothesis. Hence we assume that a,b > A™). We
know that f(a), f(b), f(a+b) satisfy the triangle inequality. Note that f(a+b) =
l(a+b), f(a) < I(a), f(b) < L(b). If f(a) < I(a), then I(a) < I(A"™)I(a+b), since
a < A™ . Similarly, if f(b) < I(b) then I(b) < I(a+b). So the triangle inequality
can only become stronger with passing from f to [.

Remark 1: Let d(z,y) = Il{y — ). Lemma 2 implies that [ is a metric on R.

Remark 2: For any a < 1 one can similary construct ! satisfying the conditions
of Lemma 1 and Lemma 2, such that [ > z°.

4. Non-trivial growth of connected radii

THEOREM 1: There exists a finitely presented group H and an infinite cyclic
subgroup Z C H such that its distortion in H satisfies dist(R) < AR? for some
A >0, and for lg|z the connected radius Ro(R) grows faster than linearly.

Proof: First note that since I is subadditive and even, the function I: Z — Z,
defined by i(z) = [I(2)] + 2 for z # 0 and I(0) = 0 is also subadditive and even.
Also note that [ is equivalent to [. Since I(x) > I(z) > /Z, the number of
integers n such that I(n) < m is not greater than m?. In particular, this number
is subexponential and hence we can use a theorem of Ol'shanskii [9], [8] to see
that there exists a finitely presented group H and a cyclic subgroup in H such
that ly|z is equivalent to I (and hence to I). Obviously, the distortion function
of the cyclic subgroup satisfies dist(r) < ArZ.

Note that for any K > 0 there exist g,h € N such that ¢ < h and lg(g) >
Klg(h). Suppose that Ro(R) < CR. Let m be the maximal number such that
Iy (m) = 1. There exist 0 < g < h such that

%‘% > 2(C +m).
Consider R = I(h). Note that e and k lie in different connected components of
the intersection of B(CR) with the Cayley graph of the cyclic subgroup. This
contradiction proves the theorem.
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Remark 3: Similarly, using Remark 2 one can see that for any a > 1 there exists
Z C H as in Theorem 1 such that dist(R) < R*.

Now we mention one more pathological property of the constructed word met-
ric.

We recall the following definition. A non-principal ultrafilter €2 is a finitely
additive measure on subsets of N such that each subset of N has measure either
0 or 1 and all finite subsets have measure 0. For any bounded function h: N - R
its limit h(€2) with respect to a non-principal ultrafilter €2 is uniquely defined by
the following condition: for every ¢ > 0

Q({i € N h(6) — h(@)]| < e}) = 1.

Let X be a metric space. Fix a sequence of scaling factors A; = 00, A; € R

For any non-principal ultrafilter one can define an asymptotic cone
T = Cong(X, \;) of X (for the definition see [6], [7]).

For many reasonable spaces (e.g., hyperbolic groups and spaces, nilpotent
groups) the asymptotic cone does not depend on the choice of ultrafilter and
scaling sequence.

Remark 4: Let Z C H be as in Theorem 1 and Y = (Z,dg). Put
Wy, = [A(n)/n} — [102*10n/n]

and consider W = {w,|n € N}. Consider any ultrafilter  such that Q(W) = 1.
Let ¢, = y/n.

Now put w!, = A™ and W’ = {w/,|n € N}. Consider any ultrafilter ' such
that @'(W’) = 1. Consider ¢/, such that &',.,, = 2n?VAM = 202101°".

Then Cong(Y,e;) is homeomorphic to R. But Cong (Y, £}) is not homeomor-
phic to R, since it is easy to see that ([0, xé”)], dp /n) converges to an embedded
loop in this space.
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