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A B S T R A C T  

In this paper we construct an example of a word metric on an infi- 
nite cyclic subgroup. This example shows that subexponential distortion 
does not obstruct non-trivial growth of connected radii. This answers 
a question of Gromov [6]. The constructed metric has other pathologi- 
cal properies. Specifically, its asymptotic cone depends on the choice of 
ultrafilter and scaling sequence. 

1. I n t r o d u c t i o n  

All  groups  under  cons idera t ion  are assumed  to be f ini tely genera ted .  If  H is a 

group,  IH and dH denote  the  word length  and  the word met r ic  cor responding  to  

some finite set of  generators .  

Consider  spaces (X, dx) and  (]I, dr) such t ha t  X C Y. The  not ion  of d i s to r t ion  

descr ibes  the  difference be tween intr insic  met r ic  dv and dx ]y on Y. 

Definition 1: See [6]. Dis to r t ion  funct ion d i s t ( r )  is 

sup dy (Yl, y2)/dx (Yl, Y2) 

where dx(y l ,  Y2) _< r.  
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We can use this definition for groups. If  G is a subgroup of H we consider 

X = (H, dH) and Y = (G, dG), where dH and da are the word metrics of H 

and G respectively. Distortion function depends on word metrics chosen. But if 

distl, dist2 are distortion functions corresponding to different word metrics, then 

d i s t l /d i s t2  is bounded for r _> 1. In what follows we say that  the distortion 

function dist is equivalent to f if d i s t / f  and f~ dist are bounded for r >_ 1. 

Any reasonable function is equivalent in this sense to some distortion function 

([8], [9]). It  is known that  if a subgroup of a hyperbolic group has subexponential 

distortion, then the distortion function is linear ([5]). For further examples of 

distortion see [1], [3], [6], [8], [9]. 

Suppose now that  Y is k-connected. Fix in Y some point, say e. Consider the 

ball B(e, R) in X. Its intersection with Y does not need to be k-connected. 

Definition 2 (see [6], w Connectedness radius Rk(r) is infL,  L > r being 

such that  any embedding of a / -sphere ,  l < k, into B(e, r) N Y is contractible in 

B(e, L) N Y. 

Now we want to apply this to the situation of G C H.  A group itself is 

not k-connected, indeed it is not connected. So we have to take an appropriate 

thickening. 

Definition 3: A metric space H1 is a thickening of H if H is isometrically 

embedded into H1 and sup d(hl, H) < oo, hi E H1. 

Definition 4 (see [6], w H is large-scale k-connected, if for any thickening H1 

of H there exists a k-connected thickening H2 of H1. 

For k = 0 as well as for geodesic H and k = 1 this definition becomes simpler, 

since in this case H is k-connected if and only if there exists a k-connected 

thickening of it. (For k > 1 the last condition is not sufficient.) 

Note that  any finitely generated group is large-scale 0-connected. The Cayley 

graph can be taken as a thickening to see this. 

A group is 1-connected if and only if it is finitely presentable ([6], 1.C'). 

I t  is shown in [6], 4.A.1 that  if the distortion function grows faster than any 

exponent then the growth of 0-connectedness radius is non-trivial. I t  was asked 

there (4.A.2) if the converse is true: that  is, if at most exponential growth of 

distortion implies triviality of 0-connected radius. 

We construct a counterexample to this. We show that  an infinite cyclic sub- 

group of some finitely presented group can have at most quadratic distortion and 

non-trivial Ro(R). Here non-trivial means that  there is no constant C such that  

Ro(R) <_ CR. 
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2. D e f i n i t i o n  o f  t h e  f u n c t i o n  l 

In this section we construct (a length function of) some metric on ~ In the 

next section (Lemma 2) we check that this function is subadditive, and hence, 

in fact, defines a metric on a line. The main property of this metric is that it is 

"extremely unmonotone" (see the statement (4) of Lemma 1). This would imply 

the non-linearity of R0. The statement (1) of Lemma 1 ensures that we can use 

a theorem of Ol'shanskii [8] and see that this metric is equivalent to some word 

metric on an infinite cyclic subgroup of some finitely generated group H.  The 

same property implies that the distortion of this subgroup is at most exponential 

(moreover, it is at most quadratic.) The statement (3) of Lemma 1 allows us to 

use another theorem of Ol'shanskii [9] and to choose the group H to be finitely 

presented. 

Define l: ]R --+ R+ as follows. Put  A (~) = 10 2.1~ On the segment [0, 10 2~ 

put l(x) -- v ~ .  For n > 1 on the segment [A (n), A (n+l)] define l in the following 

way. Let 

x(0 ~) = A(~), 

x~ ~) -_ 2n2A(~)i 

for 1 < i < 2 n ,  

x (n )  = 4n4A(n). 
2n+l  

(In the following we drop the upper index n.) On [x0, x2n+l] let l be piecewise 

linear function with I t having breaks at each xi, such that 

Z(x0)  = 

f o r l < i < n  

l(x~) = 2 n i ~ ,  

l(X2n+l) = 2 n 2 ~ .  

(Note that l(x2n-1) = l(x2n) =/(X2n+l) = ~ - )  

On the segment [X2n+l, A (n+l)] let l(x) be v ~ .  

It remains to define l(x) for x < 0, which we do by letting l(x) = l ( - x ) .  See 

Figure 1 for the graph of 1 on the segment [x0, x~n] in the case n = 4. The lower 

line is the graph of the square root. Note that  the scale of the horizontal axis is 

much larger than that  of the vertical one. 



376 A.  E R S C H L E R - D Y U B I N A  Isr .  J .  M a t h .  

~ J 
y=l(x) 

) 
X0 ~ X2 X 3 X 4 X 5 X 6 

Figure 1. 

X 7 

3. P r o p e r t i e s  o f  1 

LEMMA 1: The constructed function l has the following properties. 

(1) ~(x) > ~ .  
(2) maxxe[A(.),A(.+l) ]l(x) = / ( A  (~+1)) and minxe[A(~),A(.+l) If(x) = I(A(')). 
(3) The function [/] Iz is computable. 
( 4 )  l (x~n)) / l (x~  n)) = ~. 

Proof'. (1) Since on the segment [x2n-1, X2n+l] the function is constant and on 
[x2n+l, A (n+l)] it is equal to v~ ,  it is clear that l(x) > v/~ on [x2n-1, A(~+I)]. 

Note that l(x) > x / (n  Av/-~) >_ v ~  on [x2, x2~-1]. Note that l(x) > v ~ on 
[Xl, x2], since l decreases on this segment and l(x2) = v /~ .  On [Xo, Xl] we have 

~(x) = x / v ~  > ~ .  
(2) Note that l is non-decreasing on [X2n, A('~+I)]. Note also that l(xi) >_ l(xo) 

for any i. 

(3) This is clear from the definition of I. 
(4) Note that l(x~ n)) = 2 n 2 ~  and l(x~ n)) = 2n Ax/-~. 

LEMMA 2: Function l is subadditive, that is, l(a + b) < l(a) + l(b). 

Proof Since for any x l(x) = l ( -x ) ,  it suffices to show that for a, b _> 0 

Ill(a + b) - t(b)ll ~ l(a) .  
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In the following we will assume tha t  a, b > 0. Let us prove the inequality by 

induction on n, assuming tha t  a + b _< A (~+1). 

BASE: n = 0. Note tha t  IIx/a § b - vfbtl < x/a. 

INDUCTION STEP: Assume tha t  

IIZ(a § b) - / (b)l l  ~ I(a) 

for a + b < A (n). Consider function f :  [0, A (n+l)] -+ R such tha t  f ( x )  = l(x) 

for x E [A (~), A (n+l)] and such tha t  it is linear on [0, A0~)], f (0)  = 0, f ( A  (n)) = 

AvrA-~. Note tha t  f has no break at x~ n). Let us prove tha t  

Hf(a § b) - f(b)lr ~_ f (a) .  

(1) Let a + b < x2n+l- Since f is piecewise linear on [0, X2n§ it suffices to 

consider the cases in which at least two of the numbers  a, b, a § b are breaks of f t .  

As x l , . . . ,  x2n form an ar i thmetic  progression, either all three numbers  a, b, a § b 

are breaks of i f ,  or a § b > x2,~. 

FIRST CASE: Suppose tha t  a § b _< x2~. Then a -= xk, b = xm, a § b = Xk.+m. 

If  bo th  k and m are even, then f ( a  § b) = f ( a ) §  f(b).  Otherwise, among  

k, m, k § m there are two odd numbers. Hence two of f (xk ) ,  f (Xm),  f (Xk § m)  

are equal to 2n2v/-A, and the third one is less than  or equal to 2n2x/~.  So 

f (xk) ,  f (xm) ,  f(Xk+m) are sides of a triangle. 

SECOND CASE: Suppose tha t  a § b > X2n. Then 

f ( a  § b) .= 2 n 2 V ~  > f ( a ) ,  f(b).  

If  either f ( a )  or f (b)  is equal to 2n2v/-A, then it is clear tha t  f ( a ) ,  f (b) ,  f ( a  § b) 

are sides of  a triangle. If  not,  then a -- Xk, b = xm, k and m are even. Then  

f ( x )  = x / ( n v ~ )  for x = a, for x = b and for x -- x2n. So f ( a  § b) = f(X2n) <_ 

f (a)  § f(b).  
(2) Now let us prove tha t  

Hf(a + b) - f(b)ll ~ f (a )  

for any positive a and b such that  a + b g A (n+l). Now we can assume tha t  

a + b > x2n+l. But  then ](a + b) >_ f (a) ,  f (b)  and 

f ( a  + b) = vfa § b ~ v/a + v ~  ~ f (a )  + f(b).  
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Now let us prove the induction step. Note that on [0, A (n)] 

f (x )  = x / ~  < , / x  <_ I(x). 

Now consider a and b such that a + b _< A (n+l). For a, b _< A (n) we know the 

inequality by the induction hypothesis. Hence we assume that a, b _> A (n). We 

know that f (a), f (b), f (a + b) satisfy the triangle inequality. Note that f (a + b) = 

l (a+ b), f (a)  < l(a), f(b) < l(b). If f (a )  < l(a), then l(a) < l(A('O)l(a+ b), since 

a < A (~). Similarly, if f(b) < l(b) then l(b) < l(a + b). So the triangle inequality 

can only become stronger with passing from f to I. 

Remark 1: Let d(x,y) = l(y - x). Lemma 2 implies that l is a metric on N. 

Remark 2: For any a < 1 one can similary construct l satisfying the conditions 

of Lemma 1 and Lemma 2, such that l > x ~. 

4. Non-trivial growth of  c o n n e c t e d  radii 

THEOREM 1: There exists a finitely presented group H and an infinite cyclic 
subgroup Z C H such that its distortion in H satisfies dist(R) _< A R  2 for some 

A > O, and for IH[z the connected radius R0(R) grows faster than linearly. 

Proof: First note that since l is subadditive and even, the function [: Z --+ Z+ 

defined by [(z) = [/(z)] + 2 for z # 0 and [(0) -- 0 is also subadditive and even. 

Also note that  [ is equivalent to I. Since [(x) >_ l(x) _> v ~ ,  the number of 

integers n such that  [(n) < m is not greater than m 2. In particular, this number 

is subexponential and hence we can use a theorem of Ol'shanskii [9], [8] to see 

that there exists a finitely presented group H and a cyclic subgroup in H such 

that  In ]z is equivalent to [ (and hence to l). Obviously, the distortion function 

of the cyclic subgroup satisfies dist(r) _< Ar 2. 

Note that for any K > 0 there exist g ,h  C N such that g < h and IH(g) > 
KlH(h). Suppose that Ro(R) <_ CR. Let m be the maxinlal number such that  

IH(m) = 1. There exist 0 < g < h such that 

l'(g---A) > 2(c + m). 1.(h) 

Consider R = l(h). Note that e and h lie in different connected components of 

the intersection of B(CR)  with the Cayley graph of the cyclic subgroup. This 

contradiction proves the theorem. 
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Remark 3: Similarly, using R e m a r k  2 one can see tha t  for any a > 1 there exists 

Z C H as in Theorem 1 such tha t  d is t (R)  < R% 

Now we ment ion  one more pathological  p roper ty  of the constructed word met-  

ric. 

We recall the following definition. A n o n - p r i n c i p a l  u l t r a f i l t e r  ft is a finitely 

addit ive measure  on subsets of N such tha t  each subset  of N has measure  ei ther 

0 or 1 and all finite subsets have measure  0. For any bounded  function h: N -+ R 

its l imit h (~)  with respect  to a non-principal  ultrafi l ter 12 is uniquely defined by 

the following condition: for every e > 0 

~({ i  C N[ Ih(i) - h(~) l  I < ~}) = 1. 

Let X be a metr ic  space. Fix a sequence of scaling factors Ai -+ oc, hi E R. 

For any non-principal  ultrafi l ter one can define an asympto t i c  cone 

T = Con~(X,  hi) of X (for the definition see [6], [7]). 

For m a n y  reasonable spaces (e.g., hyperbol ic  groups and spaces, ni lpotent  

groups) the a sympto t i c  cone does not depend on the choice of ultrafil ter and 

scaling sequence. 

R e m a r k  4: Let Z C H be as in Theorem 1 and Y = (Z, dH). Pu t  

W n -~-  [A(n)/n] = [102*l~ 

and consider W = {Wnln E N}. Consider any ultrafi l ter ~ such tha t  f t (W)  = 1. 

Let cu = x/n. 

' A (n) and W' {w~ln E N}. Consider any ultrafi l ter ~t' such Now put  W n = -~-  

' such tha t  c~(n/ 2 n 2 ~  = 2n2101~ tha t  ~ ' ( W ' )  = 1. Consider ~,~ = . 

Then  Con~(Y, ci) is homeomorphic  to R. But  Con~,(Y, c~) is not homeomor-  

phic to R, since it is easy to see tha t  ([0, x~) ] ,  dg /n )  converges to an embedded  

loop in this space. 
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